{ "id": "1506.07431", "version": "v1", "published": "2015-06-24T15:43:48.000Z", "updated": "2015-06-24T15:43:48.000Z", "title": "Manifold decompositions and indices of Schrödinger operators", "authors": [ "Graham Cox", "Christoper K. R. T. Jones", "Jeremy L. Marzuola" ], "comment": "19 pages, 4 figures", "categories": [ "math.AP", "math.SP" ], "abstract": "We use the Maslov index to relate the spectra of different boundary value problems for Schr\\\"{o}dinger operators on compact manifolds. The main result is a spectral decomposition formula for a manifold $M$ divided into two connected components, $\\Omega_1$ and $\\Omega_2$, by a separating hypersurface $\\Sigma$. We use a homotopy argument to relate the spectrum of a second-order elliptic operator on $M$ to its Dirichlet and Neumann spectra on $\\Omega_1$ and $\\Omega_2$, with the difference given by the Maslov index of a path of Lagrangian subspaces. We then use a homotopy argument to relate the Maslov index to the Morse indices of the Dirichlet-to-Neumann maps on $\\Sigma$. Applications are given to doubling constructions, periodic boundary conditions and the counting of nodal domains. In particular, we give a new proof of Courant's nodal domain theorem, with an explicit formula for the nodal deficiency.", "revisions": [ { "version": "v1", "updated": "2015-06-24T15:43:48.000Z" } ], "analyses": { "keywords": [ "schrödinger operators", "manifold decompositions", "maslov index", "courants nodal domain theorem", "homotopy argument" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150607431C" } } }