{ "id": "1506.06229", "version": "v1", "published": "2015-06-20T11:05:45.000Z", "updated": "2015-06-20T11:05:45.000Z", "title": "Decomposition of modules over invariant differential operators", "authors": [ "Rikard Bögvad", "Rolf Källström" ], "comment": "33 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "Let $G$ be a finite subgroup of the linear group of a finite-dimensional complex vector $V$, $B={\\operatorname S}(V)$ be the symmetric algebra, ${\\mathcal D}=\\mathcal D^G_B$ the ring of $G$-invariant differential operators, and ${\\mathcal D}^-$ its subring of negative degree operators. We prove that $M\\mapsto M^{ann}= {\\operatorname Ann}_{\\mathcal D^-}(M)$ defines an isomorphism between the category of ${\\mathcal D}$-submodules of $B$ and a category of modules formed as lowest weight spaces. This is applied to a construction of simple ${\\mathcal D}$-submodules of $B$ when $G$ is a generalized symmetric group, to show that $B^{ann}$ is a so-called Gelfand model, and to prove branching rules. We also get a new construction of Young bases for representations of the symmetric group.", "revisions": [ { "version": "v1", "updated": "2015-06-20T11:05:45.000Z" } ], "analyses": { "subjects": [ "14F10", "20C30" ], "keywords": [ "invariant differential operators", "decomposition", "finite-dimensional complex vector", "lowest weight spaces", "linear group" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150606229B" } } }