{ "id": "1506.06174", "version": "v1", "published": "2015-06-19T22:44:03.000Z", "updated": "2015-06-19T22:44:03.000Z", "title": "Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions", "authors": [ "Sergey Bobkov", "Piotr Nayar", "Prasad Tetali" ], "comment": "18 pages", "categories": [ "math.PR" ], "abstract": "We show that for any metric probability space $(M,d,\\mu)$ with a subgaussian constant $\\sigma^2(\\mu)$ and any set $A \\subset M$ we have $\\sigma^2(\\mu_A) \\leq c \\log\\left(e/\\mu(A)\\right)\\,\\sigma^2(\\mu)$, where $\\mu_A$ is a restriction of $\\mu$ to the set $A$ and $c$ is a universal constant. As a consequence we deduce concentration inequalities for non-Lipschitz functions.", "revisions": [ { "version": "v1", "updated": "2015-06-19T22:44:03.000Z" } ], "analyses": { "keywords": [ "non-lipschitz functions", "concentration properties", "restricted measures", "applications", "metric probability space" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150606174B" } } }