{ "id": "1506.05910", "version": "v1", "published": "2015-06-19T08:35:31.000Z", "updated": "2015-06-19T08:35:31.000Z", "title": "Products of Functions in ${\\mathop\\mathrm{BMO}}({\\mathcal X})$ and $H^1_{\\rm at}({\\mathcal X})$ via Wavelets over Spaces of Homogeneous Type", "authors": [ "Xing Fu", "Dachun Yang", "Yiyu Liang" ], "comment": "80 pages, Submitted", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $({\\mathcal X},d,\\mu)$ be a metric measure space of homogeneous type in the sense of R. R. Coifman and G. Weiss and $H^1_{\\rm at}({\\mathcal X})$ be the atomic Hardy space. Via orthonormal bases of regular wavelets and spline functions recently constructed by P. Auscher and T. Hyt\\\"onen, the authors prove that the product $f\\times g$ of $f\\in H^1_{\\rm at}({\\mathcal X})$ and $g\\in\\mathop\\mathrm{BMO}({\\mathcal X})$, viewed as a distribution, can be written into a sum of two bounded bilinear operators, respectively, from $H^1_{\\rm at}({\\mathcal X})\\times\\mathop\\mathrm{BMO}({\\mathcal X})$ into $L^1({\\mathcal X})$ and from $H^1_{\\rm at}({\\mathcal X})\\times\\mathop\\mathrm{BMO}({\\mathcal X})$ into $H^{\\log}({\\mathcal X})$, which affirmatively confirms the conjecture suggested by A. Bonami and F. Bernicot (This conjecture was presented by L. D. Ky in [J. Math. Anal. Appl. 425 (2015), 807-817]). As byproducts, the authors obtain an unconditional basis of $H^1_{\\rm at}({\\mathcal X})$ and several equivalent characterizations of $H^1_{\\rm at}({\\mathcal X})$ in terms of wavelets.", "revisions": [ { "version": "v1", "updated": "2015-06-19T08:35:31.000Z" } ], "analyses": { "subjects": [ "42B30", "47A07", "42C40", "30L99" ], "keywords": [ "homogeneous type", "metric measure space", "atomic hardy space", "equivalent characterizations", "unconditional basis" ], "note": { "typesetting": "TeX", "pages": 80, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150605910F" } } }