{ "id": "1506.05181", "version": "v1", "published": "2015-06-17T01:45:36.000Z", "updated": "2015-06-17T01:45:36.000Z", "title": "On density of positive Lyapunov exponents for $C^1$ symplectic diffeomorphisms", "authors": [ "Chao Liang" ], "categories": [ "math.DS" ], "abstract": "Let $M$ be a 2$d-$dimensional compact connected Riemannian manifold and $\\omega$ be a symplectic form on $M$. In this paper, we prove that a symplectic diffeomorphism, with all Lyapunov exponent zero for almost everywhere, can be $C^1$ approximated by one with a positive Lyapunov exponent for a positive-measured subset of $M$. That is, the set \\[ \\left\\{ f\\in \\mathcal{S}ym^1_{\\omega}(M)\\,| \\begin{array}{ll} &\\mbox{The largest Lyapunov exponent }\\lambda_1(f,\\,x)>0\\\\ &\\mbox{ for a positive measure set } \\end{array} \\right\\} \\] is dense in $\\mathcal{S}ym^1_{\\omega}(M)$. \\end{abstract} \\end{center}", "revisions": [ { "version": "v1", "updated": "2015-06-17T01:45:36.000Z" } ], "analyses": { "keywords": [ "positive lyapunov exponent", "symplectic diffeomorphism", "dimensional compact connected riemannian manifold", "lyapunov exponent zero", "largest lyapunov exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150605181L" } } }