{ "id": "1506.04735", "version": "v1", "published": "2015-06-15T06:54:26.000Z", "updated": "2015-06-15T06:54:26.000Z", "title": "Infinite-Dimensional Monte-Carlo Integration", "authors": [ "Gogi Rauli Pantsulaia" ], "comment": "9 pages", "categories": [ "math.FA", "math.PR" ], "abstract": "By using main properties of uniformly distributed sequences of increasing finite sets in infinite-dimensional rectangles in $R^{\\infty}$ described in [{G.R. Pantsulaia,} {\\em On uniformly distributed sequences of an increasing family of finite sets in infinite-dimensional rectangles,} {Real Anal. Exchange.} {\\bf 36 (2)} (2010/2011), 325--340 ], an infinite-dimensional Monte-Carlo integration is elaborated and the validity of some new Strong Law type theorems are obtained in this paper.", "revisions": [ { "version": "v1", "updated": "2015-06-15T06:54:26.000Z" } ], "analyses": { "subjects": [ "28C10", "62D05", "G.3" ], "keywords": [ "infinite-dimensional monte-carlo integration", "uniformly distributed sequences", "strong law type theorems", "infinite-dimensional rectangles", "increasing finite sets" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }