{ "id": "1506.04536", "version": "v1", "published": "2015-06-15T09:55:44.000Z", "updated": "2015-06-15T09:55:44.000Z", "title": "Free group automorphisms, Train tracks, Index realization, Gate structure", "authors": [ "Thierry Coulbois", "Martin Lustig" ], "comment": "19 pages, 3 figures, 1 table", "categories": [ "math.GR" ], "abstract": "For any surface $\\Sigma$ of genus $g \\geq 1$ and (essentially) any collection of positive integers $i_1, i_2, \\ldots, i_\\ell$ with $i_1+\\cdots +i_\\ell = 4g-4$ Masur and Smillie have shown that there exists a pseudo-Anosov homeomorphism $h:\\Sigma \\to \\Sigma$ with precisely $\\ell$ singularities $S_1, \\ldots, S_\\ell$ in its stable foliation $\\cal L$, such that $\\cal L$ has precisely $i_k+2$ separatrices raying out from each $S_k$. In this paper we prove the analogue of this result for automorphisms of a free group $F_N$, where \"pseudo-Anosov homeomorphism\" is replaced by \"fully irreducible automorphism\" and the Gauss-Bonnet equality $i_1+\\cdots +i_\\ell = 4g-4$ is replaced by the index inequality $i_1+\\cdots +i_\\ell \\leq 2N-2$ from Gaboriau, Jaeger, Levitt and Lustig.", "revisions": [ { "version": "v1", "updated": "2015-06-15T09:55:44.000Z" } ], "analyses": { "subjects": [ "20E05", "20E08", "20F65", "57R30" ], "keywords": [ "free group automorphisms", "gate structure", "train tracks", "index realization", "pseudo-anosov homeomorphism" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150604536C" } } }