{ "id": "1506.03494", "version": "v1", "published": "2015-06-10T21:49:41.000Z", "updated": "2015-06-10T21:49:41.000Z", "title": "Poisson statistics for matrix ensembles at large temperature", "authors": [ "Florent Benaych-Georges", "Sandrine Péché" ], "comment": "26 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "In this article, we consider $\\beta$-ensembles, i.e. collections of particles with random positions on the real line having joint distribution $$\\frac{1}{Z_N(\\beta)}|\\Delta(\\lambda)|^\\beta e^{- \\frac{N\\beta}{4}\\sum_{i=1}^N\\lambda_i^2}d \\lambda,$$ in the regime where $\\beta\\to 0$ as $N\\to\\infty$. We briefly describe the global regime and then consider the local regime. In the case where $N\\beta$ stays bounded, we prove that the local eigenvalue statistics, in the vicinity of any real number, are asymptotically to those of a Poisson point process. In the case where $N\\beta\\to\\infty$, we prove a partial result in this direction.", "revisions": [ { "version": "v1", "updated": "2015-06-10T21:49:41.000Z" } ], "analyses": { "subjects": [ "15A52", "60F05" ], "keywords": [ "poisson statistics", "matrix ensembles", "large temperature", "local eigenvalue statistics", "poisson point process" ], "publication": { "doi": "10.1007/s10955-015-1340-8", "journal": "Journal of Statistical Physics", "year": 2015, "month": "Nov", "volume": 161, "number": 3, "pages": 633 }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JSP...161..633B" } } }