{ "id": "1506.03359", "version": "v1", "published": "2015-06-10T15:25:12.000Z", "updated": "2015-06-10T15:25:12.000Z", "title": "An asymptotic upper bound on prime gaps", "authors": [ "André LeClair" ], "categories": [ "math.NT" ], "abstract": "The Cram\\'er-Granville conjecture is an upper bound on prime gaps, $p_{n+1} - p_n < c \\, \\log^2 p_n$ for some constant $c\\geq 1$. Using a formula of Selberg, we demonstrate the validity of the conjecture in the limit of large $n$ with $c=1$.", "revisions": [ { "version": "v1", "updated": "2015-06-10T15:25:12.000Z" } ], "analyses": { "keywords": [ "asymptotic upper bound", "prime gaps", "cramer-granville conjecture", "demonstrate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150603359L" } } }