{ "id": "1506.02860", "version": "v1", "published": "2015-06-09T10:56:49.000Z", "updated": "2015-06-09T10:56:49.000Z", "title": "On the generalized Fermat equation $x^{2\\ell}+y^{2m}=z^p$ for $3 \\le p \\le 13$", "authors": [ "Samuele Anni", "Samir Siksek" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "We show that the generalized Fermat equation $x^{2\\ell}+y^{2 m}=z^p$ has no non-trivial primitive solutions for primes $\\ell$, $m \\ge 5$, and $3 \\le p \\le 13$. This is achieved by relating a putative solution to a Frey curve over a real subfield of the $p$-th cyclotomic field, and studying its mod $\\ell$ representation using modularity and level lowering. Along the way we prove the following modularity theorem. Let $K$ be a real abelian field of odd class number in which $5$ is unramified. Let $S_5$ be the set of places of $K$ above $5$. Suppose for every non-empty proper subset $S \\subset S_5$ there is a totally positive unit $u \\in \\mathcal{O}_K$ such that $\\prod_{\\mathfrak{q} \\in S} \\mathrm{Norm}_{\\mathbb{F}_\\mathfrak{q}/\\mathbb{F}_5}(u \\bmod{\\mathfrak{q}}) \\ne \\overline{1}$. Then every semistable elliptic curve over $K$ is modular.", "revisions": [ { "version": "v1", "updated": "2015-06-09T10:56:49.000Z" } ], "analyses": { "subjects": [ "11D41", "11F80", "11G05", "11F41" ], "keywords": [ "generalized fermat equation", "non-empty proper subset", "odd class number", "th cyclotomic field", "real abelian field" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150602860A" } } }