{ "id": "1506.02847", "version": "v1", "published": "2015-06-09T10:11:27.000Z", "updated": "2015-06-09T10:11:27.000Z", "title": "Computation of $λ_{K/F}$-function, where $K/F$ is a finite Galois extension", "authors": [ "Sazzad Ali Biswas" ], "comment": "34 pages", "categories": [ "math.NT" ], "abstract": "By Langlands and Deligne we know that local constants are weakly extendible functions. Therefore to give explicit formula of local constant of an induced representation of a local Galois group of a non-archimedean local field $F$, we have to compute lambda function $\\lambda_{K/F}$ for a finite extension $K/F$. In this article, when a finite extension $K/F$ is Galois, we give explicit formula for $\\lambda_{K/F}$, except $K/F$ is wildly ramified quadratic extension.", "revisions": [ { "version": "v1", "updated": "2015-06-09T10:11:27.000Z" } ], "analyses": { "keywords": [ "finite galois extension", "finite extension", "explicit formula", "local constant", "computation" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable" } } }