{ "id": "1506.02331", "version": "v1", "published": "2015-06-08T00:47:16.000Z", "updated": "2015-06-08T00:47:16.000Z", "title": "On the span of lattice points in a parallelepiped", "authors": [ "Marcel Celaya" ], "comment": "15 pages", "categories": [ "math.CO", "math.AG", "math.NT" ], "abstract": "We find a good characterization for the following problem: Given an integral row vector $c=(c_{1}\\ldots,c_{n})$ where each $c_{i}\\in\\{-1,0,1\\}$ and a lattice $\\Lambda\\subset\\mathbf{R}^{n}$ which contains the integer lattice $\\mathbf{Z}^{n}$, do all lattice points of $\\Lambda$ in the half-open unit cube $[0,1)^{n}$ lie on the hyperplane $\\{x:cx=0\\}$? The result is a direct generalization of the well-known Terminal Lemma of Reid, which in turn is based upon earlier work of Morrison and Stevens on the classification of terminal quotient singularities.", "revisions": [ { "version": "v1", "updated": "2015-06-08T00:47:16.000Z" } ], "analyses": { "subjects": [ "52B20", "52B05", "11M20" ], "keywords": [ "lattice points", "integral row vector", "half-open unit cube", "well-known terminal lemma", "terminal quotient singularities" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }