{ "id": "1506.02251", "version": "v1", "published": "2015-06-07T11:13:58.000Z", "updated": "2015-06-07T11:13:58.000Z", "title": "Vanishing dissipation limit for the Navier-Stokes-Fourier system", "authors": [ "Eduard Feireisl" ], "categories": [ "math.AP" ], "abstract": "We consider the motion of a compressible, viscous, and heat conducting fluid in the regime of small viscosity and heat conductivity. It is shown that weak solutions of the associated Navier- Stokes-Fourier system converge to a (strong) solution of the Euler system on its life span. The problem is studied in a bounded domain in the three dimensional Euclidean space, on the boundary of which the velocity field satisfies the complete slip boundary conditions.", "revisions": [ { "version": "v1", "updated": "2015-06-07T11:13:58.000Z" } ], "analyses": { "keywords": [ "vanishing dissipation limit", "navier-stokes-fourier system", "complete slip boundary conditions", "stokes-fourier system converge", "dimensional euclidean space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150602251F" } } }