{ "id": "1506.02021", "version": "v1", "published": "2015-06-05T19:37:11.000Z", "updated": "2015-06-05T19:37:11.000Z", "title": "The spans in Brownian motion", "authors": [ "Steven N. Evans", "Jim Pitman", "Wenpin Tang" ], "comment": "33 pages, 4 figures", "categories": [ "math.PR" ], "abstract": "For $d \\in \\{1,2,3\\}$, let $(B^d_t;~ t \\geq 0)$ be a $d$-dimensional standard Brownian motion. We study the $d$-Brownian span set $Span(d):=\\{t-s;~ B^d_s=B^d_t~\\mbox{for some}~0 \\leq s \\leq t\\}$. We prove that almost surely the random set $Span(d)$ is $\\sigma$-compact and dense in $\\mathbb{R}_{+}$. In addition, we show that $Span(1)=\\mathbb{R}_{+}$ almost surely; the Lebesgue measure of $Span(2)$ is $0$ almost surely and its Hausdorff dimension is $1$ almost surely; and the Hausdorff dimension of $Span(3)$ is $\\frac{1}{2}$ almost surely. We also list a number of conjectures and open problems.", "revisions": [ { "version": "v1", "updated": "2015-06-05T19:37:11.000Z" } ], "analyses": { "subjects": [ "28A78", "60J65" ], "keywords": [ "dimensional standard brownian motion", "hausdorff dimension", "brownian span set", "random set", "lebesgue measure" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150602021E" } } }