{ "id": "1506.01669", "version": "v1", "published": "2015-06-04T18:04:03.000Z", "updated": "2015-06-04T18:04:03.000Z", "title": "Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space", "authors": [ "Claudianor O. Alves", "Ailton R. Silva" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study existence, multiplicity and concentration of positive solutions for the following class of quasilinear problems \\[ - \\Delta_{\\Phi}u + V(\\epsilon x)\\phi(\\vert u\\vert)u = f(u)\\quad \\mbox{in} \\quad \\mathbb{R}^{N} \\,\\,\\, ( N\\geq 2 ), \\] where $\\Phi(t) = \\int_{0}^{\\vert t\\vert}\\phi(s)sds$ is a N-function, $ \\Delta_{\\Phi}$ is the $\\Phi$-Laplacian operator, $\\epsilon$ is a positive parameter, $V : \\mathbb{R}^{N} \\rightarrow \\mathbb{R} $ is a continuous function and $f : \\mathbb{R} \\rightarrow \\mathbb{R} $ is a $C^{1}$-function.", "revisions": [ { "version": "v1", "updated": "2015-06-04T18:04:03.000Z" } ], "analyses": { "keywords": [ "quasilinear problems", "positive solutions", "orlicz-sobolev space", "multiplicity", "concentration" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150601669A" } } }