{ "id": "1506.00926", "version": "v1", "published": "2015-06-02T15:36:43.000Z", "updated": "2015-06-02T15:36:43.000Z", "title": "Regularity and quantification for harmonic maps with free boundary", "authors": [ "Paul Laurain", "Romain Petrides" ], "categories": [ "math.AP" ], "abstract": "We prove a quantification result for harmonic maps with free boundary from arbitrary Riemannian surfaces into the unit ball of ${\\mathbb R}^{n+1}$ with bounded energy. This generalizes results obtained by Da Lio on the disc.", "revisions": [ { "version": "v1", "updated": "2015-06-02T15:36:43.000Z" } ], "analyses": { "keywords": [ "harmonic maps", "free boundary", "regularity", "arbitrary riemannian surfaces", "quantification result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }