{ "id": "1506.00676", "version": "v1", "published": "2015-06-01T21:06:59.000Z", "updated": "2015-06-01T21:06:59.000Z", "title": "Exceptional sets for nonuniformly expanding maps", "authors": [ "Sara Campos", "Katrin Gelfert" ], "categories": [ "math.DS" ], "abstract": "Given a rational map of the Riemann sphere and a subset $A$ of its Julia set, we study the $A$-exceptional set, that is, the set of points whose orbit does not accumulate at $A$. We prove that if the Hausdorff dimension of $A$ is smaller than the dynamical dimension of the system then the Hausdorff dimension of the $A$-exceptional set is larger than or equal to the dynamical dimension, with equality in the particular case when the map is expansive. Furthermore, if the topological entropy of $A$ is less than the topological entropy of the full system then the $A$-exceptional set has full topological entropy.", "revisions": [ { "version": "v1", "updated": "2015-06-01T21:06:59.000Z" } ], "analyses": { "keywords": [ "exceptional set", "nonuniformly expanding maps", "hausdorff dimension", "dynamical dimension", "julia set" ], "publication": { "doi": "10.1088/0951-7715/29/4/1238", "journal": "Nonlinearity", "year": 2016, "month": "Apr", "volume": 29, "number": 4, "pages": 1238 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016Nonli..29.1238C" } } }