{ "id": "1506.00475", "version": "v1", "published": "2015-06-01T12:39:28.000Z", "updated": "2015-06-01T12:39:28.000Z", "title": "Unbounded Supersolutions of Some Quasilinear Parabolic Equations: a Dichotomy", "authors": [ "Juha Kinnunen", "Peter Lindqvist" ], "categories": [ "math.AP" ], "abstract": "We study unbounded (viscosity) supersolutions of the Evolutionary p-Laplace Equation in the slow diffusion case. The supersolutions fall into two widely different classes, depending on whether they are locally summable to the power p-2 or not. Also the Porous Medium Equation is studied.", "revisions": [ { "version": "v1", "updated": "2015-06-01T12:39:28.000Z" } ], "analyses": { "subjects": [ "35K55" ], "keywords": [ "quasilinear parabolic equations", "unbounded supersolutions", "evolutionary p-laplace equation", "slow diffusion case", "porous medium equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150600475K" } } }