{ "id": "1506.00056", "version": "v1", "published": "2015-05-30T01:27:36.000Z", "updated": "2015-05-30T01:27:36.000Z", "title": "Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence", "authors": [ "Marino Badiale", "Michela Guida", "Sergio Rolando" ], "comment": "29 pages, 8 figures", "categories": [ "math.AP" ], "abstract": "We prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation \\[ -\\triangle u+V\\left( \\left| x\\right| \\right) u=g\\left( \\left| x\\right| ,u\\right) \\quad \\textrm{in }\\Omega \\subseteq \\mathbb{R}^{N},\\ N\\geq 3, \\] where $\\Omega $ is a radial domain (bounded or unbounded) and $u$ satisfies $u=0$ on $\\partial \\Omega $ if $\\Omega \\neq \\mathbb{R}^{N}$ and $u\\rightarrow 0$ as $\\left| x\\right| \\rightarrow \\infty $ if $\\Omega $ is unbounded. The potential $V$ may be vanishing or unbounded at zero or at infinity and the nonlinearity $g$ may be superlinear or sublinear. If $g$ is sublinear, the case with $g\\left( \\left| \\cdot \\right| ,0\\right) \\neq 0$ is also considered.", "revisions": [ { "version": "v1", "updated": "2015-05-30T01:27:36.000Z" } ], "analyses": { "subjects": [ "35J60", "35J20", "35Q55", "35J25" ], "keywords": [ "weighted sobolev spaces", "radial functions", "existence results", "compactness", "finite energy solutions" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150600056B" } } }