{ "id": "1505.07891", "version": "v1", "published": "2015-05-29T00:24:49.000Z", "updated": "2015-05-29T00:24:49.000Z", "title": "The polynomial representation of the type $A_{n - 1}$ rational Cherednik algebra in characteristic $p \\mid n$", "authors": [ "Sheela Devadas", "Yi Sun" ], "categories": [ "math.RT", "math.QA" ], "abstract": "We study the polynomial representation of the rational Cherednik algebra of type $A_{n-1}$ with generic parameter in characteristic $p$ for $p \\mid n$. We give explicit formulas for generators for the maximal proper graded submodule, show that they cut out a complete intersection, and thus compute the Hilbert series of the irreducible quotient. Our methods are motivated by taking characteristic $p$ analogues of existing characteristic $0$ results.", "revisions": [ { "version": "v1", "updated": "2015-05-29T00:24:49.000Z" } ], "analyses": { "keywords": [ "rational cherednik algebra", "polynomial representation", "characteristic", "maximal proper graded submodule", "complete intersection" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150507891D" } } }