{ "id": "1505.06757", "version": "v1", "published": "2015-05-25T20:58:19.000Z", "updated": "2015-05-25T20:58:19.000Z", "title": "On Existence of Generic Cusp Forms on Semisimple Algebraic Groups", "authors": [ "Allen Moy", "Goran Muić" ], "categories": [ "math.NT", "math.RT" ], "abstract": "In this paper we discuss the existence of certain classes of cuspidal automorphic representations having non-zero Fourier coefficients for general semisimple algebraic group $G$ defined over a number field $k$ such that its Archimedean group $G_\\infty$ is not compact. When $G$ is quasi--split over $k$, we obtain a result on existence of generic cuspidal automorphic representations which generalize a result of Vign\\' eras, Henniart, and Shahidi. We also discuss the existence of cuspidal automorphic forms with non--zero Fourier coefficients for congruence of subgroups of $G_\\infty$.", "revisions": [ { "version": "v1", "updated": "2015-05-25T20:58:19.000Z" } ], "analyses": { "keywords": [ "generic cusp forms", "non-zero fourier coefficients", "generic cuspidal automorphic representations", "general semisimple algebraic group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506757M" } } }