{ "id": "1505.06610", "version": "v1", "published": "2015-05-25T12:43:28.000Z", "updated": "2015-05-25T12:43:28.000Z", "title": "On the lower bound of the discrepancy of (t; s) sequences: I", "authors": [ "Mordechay B. Levin" ], "categories": [ "math.NT" ], "abstract": "Let $ (H_s(n))_{n \\geq 1} $ be an $s-$dimensional Halton's sequence. Let $D_N$ be the discrepancy of the sequence $ (H_s(n))_{n = 1}^{N} $. It is known that $ND_N =O(\\ln^s N)$ as $N \\to \\infty $. In this paper we prove that this estimate is exact: $$\\overline{\\lim}_{ N \\to\\infty} N \\ln^{-s}(N) D_N >0.$$", "revisions": [ { "version": "v1", "updated": "2015-05-25T12:43:28.000Z" } ], "analyses": { "subjects": [ "11K38" ], "keywords": [ "lower bound", "discrepancy", "dimensional haltons sequence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506610L" } } }