{ "id": "1505.06500", "version": "v1", "published": "2015-05-24T23:27:49.000Z", "updated": "2015-05-24T23:27:49.000Z", "title": "On the greatest prime factor of some divisibility sequences", "authors": [ "Amir Akbary", "Soroosh Yazdani" ], "categories": [ "math.NT" ], "abstract": "Let $P(m)$ denote the greatest prime factor of $m$. For integer $a>1$, M. Ram Murty and S. Wong proved that, under the assumption of the ABC conjecture, $$P(a^n-1)\\gg_{\\epsilon, a} n^{2-\\epsilon}$$ for any $\\epsilon>0$. We study analogues results for the corresponding divisibility sequence over the function field $\\mathbb{F}_q(t)$ and for some divisibility sequences associated to elliptic curves over the rational field $\\mathbb{Q}$.", "revisions": [ { "version": "v1", "updated": "2015-05-24T23:27:49.000Z" } ], "analyses": { "subjects": [ "11T06", "11G05", "11J25" ], "keywords": [ "greatest prime factor", "study analogues results", "ram murty", "rational field", "elliptic curves" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506500A" } } }