{ "id": "1505.06293", "version": "v1", "published": "2015-05-23T08:46:22.000Z", "updated": "2015-05-23T08:46:22.000Z", "title": "On $K_p$-series and varieties generated by wreath products of $p$-groups", "authors": [ "Vahagn H. Mikaelian" ], "categories": [ "math.GR" ], "abstract": "Let $A$ be a nilpotent $p$-groups of finite exponent, and $B$ be an abelian $p$-groups of finite exponent. Then the wreath product $A {\\rm Wr} B$ generates the variety ${\\rm var}(A) {\\rm var}(B)$ if and only if the group $B$ contains a subgroup isomorphic to the direct product $C_{p^v}^\\infty$ of at least countably many copies of the cyclic group $C_{p^v}$ of order $p^v = \\exp{(B)}$. The obtained theorem continues our previous study of cases when ${\\rm var}(A {\\rm Wr} B ) = {\\rm var}(A){\\rm var}(B)$ holds for some other classes of groups $A$ and $B$ (abelian groups, finite groups, etc.).", "revisions": [ { "version": "v1", "updated": "2015-05-23T08:46:22.000Z" } ], "analyses": { "subjects": [ "20E22", "20E10", "20K01", "20K25", "20D15" ], "keywords": [ "wreath product", "finite exponent", "abelian groups", "theorem continues" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506293M" } } }