{ "id": "1505.06183", "version": "v1", "published": "2015-05-22T19:18:34.000Z", "updated": "2015-05-22T19:18:34.000Z", "title": "A non-compactness result on the fractional Yamabe problem in large dimensions", "authors": [ "Seunghyeok Kim", "Monica Musso", "Juncheng Wei" ], "comment": "47 pages. Any comment is welcome", "categories": [ "math.AP", "math.DG" ], "abstract": "Let $(X^{n+1}, g^+)$ be an $(n+1)$-dimensional asymptotically hyperbolic manifold with a conformal infinity $(M^n, [\\hat{h}])$. The fractional Yamabe problem addresses to solve \\[P^{\\gamma}[g^+,\\hat{h}] (u) = cu^{n+2\\gamma \\over n-2\\gamma}, \\quad u > 0 \\quad \\text{on } M\\] where $c \\in \\mathbb{R}$ and $P^{\\gamma}[g^+,\\hat{h}]$ is the fractional conformal Laplacian whose principal symbol is $(-\\Delta)^{\\gamma}$. In this paper, we construct a metric on the half space $X = \\mathbb{R}^{n+1}_+$, which is conformally equivalent to the unit ball, for which the solution set of the fractional Yamabe equation is non-compact provided that $n \\ge 24$ for $\\gamma \\in (0, \\gamma^*)$ and $n \\ge 25$ for $\\gamma \\in [\\gamma^*,1)$ where $\\gamma^* \\in (0, 1)$ is a certain transition exponent. The value of $\\gamma^*$ turns out to be approximately 0.940197.", "revisions": [ { "version": "v1", "updated": "2015-05-22T19:18:34.000Z" } ], "analyses": { "keywords": [ "large dimensions", "non-compactness result", "fractional yamabe problem addresses", "fractional conformal laplacian", "dimensional asymptotically hyperbolic manifold" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506183K" } } }