{ "id": "1505.06088", "version": "v1", "published": "2015-05-22T14:11:03.000Z", "updated": "2015-05-22T14:11:03.000Z", "title": "Rectifiability of harmonic measure in domains with porous boundaries", "authors": [ "Jonas Azzam", "Mihalis Mourgoglou", "Xavier Tolsa" ], "comment": "14 pages", "categories": [ "math.CA", "math.AP" ], "abstract": "We show that if $n\\geq 2$, $\\Omega\\subset \\mathbb R^{n+1}$ is a connected domain with porous boundary, and $E\\subset \\partial\\Omega$ is a set of finite and positive Hausdorff $H^{n}$-measure upon which the harmonic measure $\\omega$ is absolutely continuous with respect to $H^{n}$, then $\\omega|_E$ is concentrated on an $n$-rectifiable set.", "revisions": [ { "version": "v1", "updated": "2015-05-22T14:11:03.000Z" } ], "analyses": { "subjects": [ "31A15", "28A75", "42B20" ], "keywords": [ "harmonic measure", "porous boundary", "rectifiability" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506088A" } } }