{ "id": "1505.06069", "version": "v1", "published": "2015-05-22T13:33:42.000Z", "updated": "2015-05-22T13:33:42.000Z", "title": "Homogenization via sprinkling", "authors": [ "Itai Benjamini", "Vincent Tassion" ], "comment": "11 pages", "categories": [ "math.PR" ], "abstract": "We show that a superposition of an $\\varepsilon$-Bernoulli bond percolation and any everywhere percolating subgraph of $\\mathbb Z^d$, $d\\ge 2$, results in a connected subgraph, which after a renormalization dominates supercritical Bernoulli percolation. This result, which confirms a conjecture of the first author together with H\\\"aggstr\\\"om and Schramm (2000), is mainly motivated by obtaining finite volume characterizations of uniqueness for general percolation processes.", "revisions": [ { "version": "v1", "updated": "2015-05-22T13:33:42.000Z" } ], "analyses": { "subjects": [ "60K35", "05C80" ], "keywords": [ "homogenization", "renormalization dominates supercritical bernoulli percolation", "bernoulli bond percolation", "obtaining finite volume characterizations", "general percolation processes" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150506069B" } } }