{ "id": "1505.05817", "version": "v1", "published": "2015-05-21T18:14:44.000Z", "updated": "2015-05-21T18:14:44.000Z", "title": "Counterexamples Related to Rotations of Shadows of Convex Bodies", "authors": [ "M. Angeles Alfonseca", "Michelle Cordier" ], "comment": "17 pages, 11 figures", "categories": [ "math.MG" ], "abstract": "We construct examples of two convex bodies $K,L$ in $\\mathbb{R}^n$, such that every projection of $K$ onto a $(n-1)$-dimensional subspace can be rotated to be contained in the corresponding projection of $L$, but $K$ itself cannot be rotated to be contained in $L$. We also find necessary conditions on $K$ and $L$ to ensure that $K$ can be rotated to be contained in $L$ if all the $(n-1)$-dimensional projections have this property.", "revisions": [ { "version": "v1", "updated": "2015-05-21T18:14:44.000Z" } ], "analyses": { "subjects": [ "52A20", "52A38", "44A12" ], "keywords": [ "convex bodies", "counterexamples", "dimensional projections", "construct examples", "necessary conditions" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }