{ "id": "1505.05622", "version": "v1", "published": "2015-05-21T07:17:04.000Z", "updated": "2015-05-21T07:17:04.000Z", "title": "On Equality of Certain Automorphism Groups", "authors": [ "Surjeet Kour", "Vishakha" ], "categories": [ "math.GR" ], "abstract": "Let $G = H\\times A$ be a finite group, where $H$ is a purely non-abelian subgroup of $G$ and $A$ is a non-trivial abelian factor of $G$. Then, for $n \\geq 2$, we show that there exists an isomorphism $\\phi : Aut_{Z(G)}^{\\gamma_{n}(G)}(G) \\rightarrow Aut_{Z(H)}^{\\gamma_{n}(H)}(H)$ such that $\\phi(Aut_{c}^{n-1}(G))=Aut_{c}^{n-1}(H)$. We also give some necessary and sufficient conditions on a finite $p$-group $G$ such that $Autcent(G)=Aut_{c}^{n-1}(G)$ . Furthermore, for a finite non-abelian $p$-group $G$, we give some necessary and sufficient conditions for $Aut_{Z(G)}^{\\gamma_{n}(G)}(G)$ to be equal to $Aut_{\\gamma_2(G)}^{Z(G)}(G)$.", "revisions": [ { "version": "v1", "updated": "2015-05-21T07:17:04.000Z" } ], "analyses": { "subjects": [ "20D15", "20D45" ], "keywords": [ "automorphism groups", "sufficient conditions", "non-trivial abelian factor", "purely non-abelian subgroup", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }