{ "id": "1505.04975", "version": "v1", "published": "2015-05-19T12:53:09.000Z", "updated": "2015-05-19T12:53:09.000Z", "title": "On the lower bound of the discrepancy of $(t,s)$ sequences: II", "authors": [ "Mordechay B. Levin" ], "categories": [ "math.NT" ], "abstract": "Let $ (\\bx(n))_{n \\geq 1} $ be an $s-$dimensional Niederreiter-Xing sequence in base $b$. Let $D((\\bx(n))_{n = 1}^{N})$ be the discrepancy of the sequence $ (\\bx(n))_{n = 1}^{N} $. It is known that $N D((\\bx(n))_{n = 1}^{N}) =O(\\ln^s N)$ as $N \\to \\infty $. In this paper, we prove that this estimate is exact. Namely, there exists a constant $K>0$, such that $$ \\inf_{\\bw \\in [0,1)^s} \\sup_{1 \\leq N \\leq b^m} N D((\\bx(n)\\oplus \\bw)_{n = 1}^{N}) \\geq K m^s \\quad {\\rm for} \\; \\; m=1,2,...\\;. $$ We also get similar results for other explicit constructions of $(t,s)$ sequences.", "revisions": [ { "version": "v1", "updated": "2015-05-19T12:53:09.000Z" } ], "analyses": { "subjects": [ "11K38" ], "keywords": [ "lower bound", "discrepancy", "dimensional niederreiter-xing sequence", "similar results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504975L" } } }