{ "id": "1505.04929", "version": "v1", "published": "2015-05-19T09:42:37.000Z", "updated": "2015-05-19T09:42:37.000Z", "title": "Central binomial coefficients also count (2431,4231,1432,4132)-avoiders", "authors": [ "Marie-Louise Bruner" ], "comment": "8 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "This short paper is concerned with the enumeration of permutations avoiding the following four patterns: $2431$, $4231$, $1432$ and $4132$. Using a bijective construction, we prove that these permutations are counted by the central binomial coefficients.", "revisions": [ { "version": "v1", "updated": "2015-05-19T09:42:37.000Z" } ], "analyses": { "subjects": [ "05A05", "05A10" ], "keywords": [ "central binomial coefficients", "short paper", "permutations" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504929B" } } }