{ "id": "1505.04893", "version": "v1", "published": "2015-05-19T07:15:45.000Z", "updated": "2015-05-19T07:15:45.000Z", "title": "$L^p$-estimates for parabolic systems with unbounded coefficients coupled at zero and first order", "authors": [ "Luciana Angiuli", "Luca Lorenzi", "Diego Pallara" ], "categories": [ "math.AP" ], "abstract": "We consider a class of nonautonomous parabolic first-order coupled systems in the Lebesgue space $L^p({\\mathbb R}^d;{\\mathbb R}^m)$, $(d,m \\ge 1)$ with $p\\in [1,+\\infty)$. Sufficient conditions for the associated evolution operator ${\\bf G}(t,s)$ in $C_b({\\mathbb R}^d;{\\mathbb R}^m)$ to extend to a strongly continuous operator in $L^p({\\mathbb R}^d;{\\mathbb R}^m)$ are given. Some $L^p$-$L^q$ estimates are also established together with $L^p$ gradient estimates.", "revisions": [ { "version": "v1", "updated": "2015-05-19T07:15:45.000Z" } ], "analyses": { "subjects": [ "35K45", "47D06" ], "keywords": [ "unbounded coefficients", "parabolic systems", "first order", "nonautonomous parabolic first-order coupled systems", "evolution operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504893A" } } }