{ "id": "1505.04869", "version": "v1", "published": "2015-05-19T04:40:35.000Z", "updated": "2015-05-19T04:40:35.000Z", "title": "On Feldman-Ilmanen-Knopf conjecture for the blow-up behavior of the Kahler Ricci flow", "authors": [ "Bin Guo", "Jian Song" ], "comment": "24 pages", "categories": [ "math.DG" ], "abstract": "We consider the Ricci flow on $\\mathbb{CP}^n$ blown-up at one point starting with any $U(n)$-invariant K\\\"ahler metric. It is known that the K\\\"ahler-Ricci flow must develop Type I singularities. We show that if the total volume does not go to zero at the singular time, then any Type I parabolic blow-up limit of the Ricci flow along the exceptional divisor is the unique $U(n)$-complete shrinking K\\\"ahler-Ricci soliton on $\\mathbb C^n$ blown-up at one point. This establishes the conjecture of Feldman-Ilmanen-Knopf.", "revisions": [ { "version": "v1", "updated": "2015-05-19T04:40:35.000Z" } ], "analyses": { "keywords": [ "kahler ricci flow", "blow-up behavior", "feldman-ilmanen-knopf conjecture", "parabolic blow-up limit", "exceptional divisor" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504869G" } } }