{ "id": "1505.04682", "version": "v1", "published": "2015-05-18T15:26:02.000Z", "updated": "2015-05-18T15:26:02.000Z", "title": "Monotone Riemannian Metrics and Negativity of Entanglement", "authors": [ "Prasenjit Deb" ], "comment": "Comments and suggestions welcome", "categories": [ "quant-ph", "math-ph", "math.MP" ], "abstract": "Monotone Riemannian metrics are very useful for information-theoretic and statistical considerations on the quantum state space. In this article, considering the quantum state space being spanned by 2x2 density matrices, we determine a particular Riemannian metric for a state $\\rho$ . Then we show that if $\\rho$ gets entangled with another quantum state, the negativity of the generated entangled state is, upto a constant factor, equals to square root of that particular Riemannian metric. Our result clearly relates a geometric quantity to a measure of entanglement. Moreover, the result establishes the possibility of understanding quantum correlations through geometric approach.", "revisions": [ { "version": "v1", "updated": "2015-05-18T15:26:02.000Z" } ], "analyses": { "keywords": [ "monotone riemannian metrics", "quantum state space", "negativity", "entanglement", "2x2 density matrices" ], "publication": { "doi": "10.1007/s11128-015-1227-2", "journal": "Quantum Information Processing", "year": 2016, "month": "Apr", "volume": 15, "number": 4, "pages": 1629 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016QuIP...15.1629D" } } }