{ "id": "1505.04671", "version": "v1", "published": "2015-05-18T15:07:07.000Z", "updated": "2015-05-18T15:07:07.000Z", "title": "A Moderate Deviation Principle for 2-D Stochastic Navier-Stokes Equations Driven by Multiplicative Lévy Noises", "authors": [ "Zhao Dong", "Jie Xiong", "Jianliang Zhai", "Tusheng Zhang" ], "comment": "arXiv admin note: text overlap with arXiv:1401.7316, arXiv:1203.4020 by other authors", "categories": [ "math.PR" ], "abstract": "In this paper, we establish a moderate deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative $L\\acute{e}vy$ noises. The weak convergence method introduced by Budhiraja, Dupuis and Ganguly in arXiv:1401.73v1 plays a key role.", "revisions": [ { "version": "v1", "updated": "2015-05-18T15:07:07.000Z" } ], "analyses": { "subjects": [ "60H15", "35R60", "37L55" ], "keywords": [ "moderate deviation principle", "multiplicative lévy noises", "two-dimensional stochastic navier-stokes equations driven" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504671D" } } }