{ "id": "1505.04468", "version": "v1", "published": "2015-05-17T22:14:33.000Z", "updated": "2015-05-17T22:14:33.000Z", "title": "On residually finite groups with Engel-like conditions", "authors": [ "Raimundo Bastos" ], "comment": "9 pages", "categories": [ "math.GR" ], "abstract": "Let $m,n$ be positive integers. Suppose that $G$ is a residually finite group in which for every element $x \\in G$ there exists a positive integer $q=q(x) \\leqslant m$ such that $x^q$ is $n$-Engel. We show that $G$ is locally virtually nilpotent. Further, let $w$ be a multilinear commutator and $G$ a residually finite group in which for every product of at most $896$ $w$-values $x$ there exists a positive integer $q=q(x)$ dividing $m$ such that $x^q$ is $n$-Engel. Then $w(G)$ is locally virtually nilpotent.", "revisions": [ { "version": "v1", "updated": "2015-05-17T22:14:33.000Z" } ], "analyses": { "subjects": [ "20F45", "20E26" ], "keywords": [ "residually finite group", "engel-like conditions", "positive integer", "locally virtually nilpotent", "multilinear commutator" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504468B" } } }