{ "id": "1505.04386", "version": "v1", "published": "2015-05-17T12:12:45.000Z", "updated": "2015-05-17T12:12:45.000Z", "title": "Annular Khovanov homology and knotted Schur-Weyl representations", "authors": [ "J. Elisenda Grigsby", "Anthony M. Licata", "Stephan M. Wehrli" ], "comment": "38 pages, 8 figures", "categories": [ "math.GT", "math.QA", "math.RT" ], "abstract": "Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a \"knotted\" Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.", "revisions": [ { "version": "v1", "updated": "2015-05-17T12:12:45.000Z" } ], "analyses": { "subjects": [ "57M27", "81R50", "20F36" ], "keywords": [ "knotted schur-weyl representations", "sutured annular khovanov homology carries", "exterior current algebra", "schur-weyl duality", "lie algebra" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150504386E" } } }