{ "id": "1505.03697", "version": "v1", "published": "2015-05-14T12:00:44.000Z", "updated": "2015-05-14T12:00:44.000Z", "title": "Tiling with arbitrary tiles", "authors": [ "Vytautas Gruslys", "Imre Leader", "Ta Sheng Tan" ], "comment": "23 pages, 19 figures", "categories": [ "math.CO" ], "abstract": "Let $T$ be a tile in $\\mathbb{Z}^n$, meaning a finite subset of $\\mathbb{Z}^n$. It may or may not tile $\\mathbb{Z}^n$, in the sense of $\\mathbb{Z}^n$ having a partition into copies of $T$. However, we prove that $T$ does tile $\\mathbb{Z}^d$ for some $d$. This resolves a conjecture of Chalcraft.", "revisions": [ { "version": "v1", "updated": "2015-05-14T12:00:44.000Z" } ], "analyses": { "subjects": [ "05B45", "05B50", "52C22" ], "keywords": [ "arbitrary tiles", "finite subset", "conjecture" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }