{ "id": "1505.03547", "version": "v1", "published": "2015-05-13T20:31:03.000Z", "updated": "2015-05-13T20:31:03.000Z", "title": "Artin algebras of finite type and finite categories of $Δ$-good modules", "authors": [ "Danilo D. da Silva" ], "comment": "accepted for publication in Communications in Algebra", "categories": [ "math.RT" ], "abstract": "We give an alternative proof to the fact that if the square of the infinite radical of the module category of an Artin algebra is equal to zero then the algebra is of finite type by making use of the theory of postprojective and preinjective partitions. Further, we use this new approach in order to get a characterization of finite subcategories of $\\Delta$-good modules of a quasi-hereditary algebra in terms of depth of morphisms similar to a recently obtained characterization of Artin algebras of finite type.", "revisions": [ { "version": "v1", "updated": "2015-05-13T20:31:03.000Z" } ], "analyses": { "keywords": [ "artin algebra", "finite type", "finite categories", "module category", "characterization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150503547D" } } }