{ "id": "1505.03248", "version": "v1", "published": "2015-05-13T05:10:13.000Z", "updated": "2015-05-13T05:10:13.000Z", "title": "On 3 and 4 dimensional regular solids, Part 1: The 4-simplex generates the free group", "authors": [ "Adrian Ocneanu" ], "categories": [ "math.RT", "math.GR" ], "abstract": "We show that, when the vertices $q_i, i=0,...,4$ of the 4 simplex, or 5-cell, viewed as unit quaternions, are arranged so that $q_0=1$, the remaining 4 vertices generate the free group with 4 generators $\\mathbb F_4$.", "revisions": [ { "version": "v1", "updated": "2015-05-13T05:10:13.000Z" } ], "analyses": { "keywords": [ "dimensional regular solids", "free group", "unit quaternions", "vertices generate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150503248O" } } }