{ "id": "1505.03089", "version": "v1", "published": "2015-05-12T17:17:19.000Z", "updated": "2015-05-12T17:17:19.000Z", "title": "Quaternionic R transform and non-hermitian random matrices", "authors": [ "Zdzislaw Burda", "Artur Swiech" ], "comment": "21 pages, 6 figures", "categories": [ "math-ph", "cond-mat.stat-mech", "math.MP" ], "abstract": "Using the Cayley-Dickson construction we generalize the free probability calculus to non-hermitian random matrices. The main object in this generalization is a quaternionic extension of the R transform which is a generating function for planar (non-crossing) cumulants of the given random matrix $X$ in the limit of infinite matrix size $N\\rightarrow \\infty$. The cumulants are defined as connected averages of all distinct powers of $X$ and its hermitian conjugate $X^\\dagger$ of the type: $\\langle\\langle \\frac{1}{N} \\mbox{Tr} X^{a} X^{\\dagger b} X^c \\ldots \\rangle\\rangle$ for $N\\rightarrow \\infty$. We show that the R transform for gaussian elliptic laws is given by a simple linear quaternionic map $\\mathcal{R}(z+wj) = x + \\sigma^2 \\left(\\mu e^{2i\\phi} z + w j\\right)$ where $(z,w)$ is the Cayley-Dickson pair of complex numbers forming a quaternion $q=(z,w)\\equiv z+ wj$. This map has five real parameters $\\Re e x$, $\\Im m x$, $\\phi$, $\\sigma$ and $\\mu$. We use the R transform to formulate the addition and multiplication laws for non-hermitian random matrices. For illustration we apply these laws to calculate the limiting eigenvalue densities of several products of gaussian random matrices.", "revisions": [ { "version": "v1", "updated": "2015-05-12T17:17:19.000Z" } ], "analyses": { "keywords": [ "random matrix", "non-hermitian random matrices", "simple linear quaternionic map", "gaussian elliptic laws", "free probability calculus" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }