{ "id": "1505.03012", "version": "v1", "published": "2015-05-12T14:07:31.000Z", "updated": "2015-05-12T14:07:31.000Z", "title": "Energy concentration and a priori estimates for $B_2$ and $G_2$ types of Toda systems", "authors": [ "Chang-shou Lin", "Lei Zhang" ], "comment": "24 pages", "categories": [ "math.AP" ], "abstract": "For Toda systems with Cartan matrix either $B_2$ or $G_2$, we prove that the local mass of blowup solutions at its blowup points converges to a finite set and further more this finite set can be completely determined. As an application of the local mass classification we establish a priori estimates for corresponding Toda systems defined on Riemann surfaces.", "revisions": [ { "version": "v1", "updated": "2015-05-12T14:07:31.000Z" } ], "analyses": { "subjects": [ "35J60", "35J47" ], "keywords": [ "priori estimates", "energy concentration", "finite set", "blowup points converges", "local mass classification" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150503012L" } } }