{ "id": "1505.02357", "version": "v1", "published": "2015-05-10T09:14:22.000Z", "updated": "2015-05-10T09:14:22.000Z", "title": "Algebras of finite representation type arising from maximal rigid objects", "authors": [ "Aslak Bakke Buan", "Yann Palu", "Idun Reiten" ], "comment": "23 pages", "categories": [ "math.RT", "math.CT", "math.RA" ], "abstract": "We give a complete classification of all algebras appearing as endomorphism algebras of maximal rigid objects in standard 2-Calabi-Yau categories of finite type. Such categories are equivalent to certain orbit categories of derived categories of Dynkin algebras. It turns out that with one exception, all the algebras that occur are $2$-Calabi-Yau-tilted, and therefore appear in an earlier classification by Bertani-{\\O}kland and Oppermann. We explain this phenomenon by investigating the subcategories generated by rigid objects in standard 2-Calabi-Yau categories of finite type.", "revisions": [ { "version": "v1", "updated": "2015-05-10T09:14:22.000Z" } ], "analyses": { "subjects": [ "16G20", "16G70", "18E30", "16E35" ], "keywords": [ "maximal rigid objects", "finite representation type arising", "finite type", "earlier classification", "complete classification" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }