{ "id": "1505.02293", "version": "v1", "published": "2015-05-09T17:17:22.000Z", "updated": "2015-05-09T17:17:22.000Z", "title": "Regularity criterion and energy conservation for the supercritical Quasi-Geostrophic equation", "authors": [ "Mimi Dai" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "This paper studies the regularity and energy conservation problems for the 2D supercritical quasi-geostrophic (SQG) equation. We apply an approach of splitting the dissipation wavenumber to obtain a new regularity condition which is weaker than all the Prodi-Serrin type regularity conditions. Moreover, we prove that any weak solution of the supercritical SQG in $L^2(0,T; B^{1/2}_{2,c(\\mathbb N)})$ conserves energy.", "revisions": [ { "version": "v1", "updated": "2015-05-09T17:17:22.000Z" } ], "analyses": { "subjects": [ "76D03", "35Q35" ], "keywords": [ "supercritical quasi-geostrophic equation", "regularity criterion", "prodi-serrin type regularity conditions", "energy conservation problems", "paper studies" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150502293D" } } }