{ "id": "1505.02053", "version": "v1", "published": "2015-05-08T14:46:38.000Z", "updated": "2015-05-08T14:46:38.000Z", "title": "Hyperbolic diagram groups are free", "authors": [ "Anthony Genevois" ], "comment": "17 pages, 9 figures", "categories": [ "math.GR" ], "abstract": "In this paper, we study the so-called diagram groups. Our main result is that diagram groups are free if and only if they do not contain any subgroup isomorphic to $\\mathbb{Z}^2$. As an immediate corollary, we get that hyperbolic diagram groups are necessarily free, answering a question of Guba and Sapir.", "revisions": [ { "version": "v1", "updated": "2015-05-08T14:46:38.000Z" } ], "analyses": { "subjects": [ "20F65", "20F67" ], "keywords": [ "hyperbolic diagram groups", "main result", "subgroup isomorphic", "immediate corollary", "necessarily free" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150502053G" } } }