{ "id": "1505.01426", "version": "v1", "published": "2015-05-06T16:42:08.000Z", "updated": "2015-05-06T16:42:08.000Z", "title": "Upper bounds on the smallest size of a saturating set in a projective plane and the Birthday problem", "authors": [ "Daniele Bartoli", "Alexander A. Davydov", "Massimo Giulietti", "Stefano Marcugini", "Fernanda Pambianco" ], "comment": "6 pages, 17 references", "categories": [ "math.CO" ], "abstract": "The following upper bound on the smallest size $s(2,q)$ of a saturating set in a projective plane $\\Pi _{q}$ (not necessary Desarguesian) of order $q$ is proven. \\begin{equation*} s(2,q)\\leq 2\\sqrt{(q+1)\\ln q}+2\\thicksim 2\\sqrt{q\\ln q}. \\end{equation*} Our approach is probabilistic rather than geometric. The proof uses some known results on the classical Birthday problem, and also provides the following result. In $\\Pi _{q}$ any point $k$-set, with $ k\\leq 2c\\sqrt{(q+1)\\ln q}+2$ and an universal constant $c\\geq 1,$ is a saturating set with probability \\begin{equation*} p>1-\\frac{1}{q^{2c^{2}-2}}. \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2015-05-06T16:42:08.000Z" } ], "analyses": { "subjects": [ "51E21", "51E22", "94B05" ], "keywords": [ "saturating set", "upper bound", "projective plane", "smallest size", "universal constant" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }