{ "id": "1505.01254", "version": "v1", "published": "2015-05-06T05:24:06.000Z", "updated": "2015-05-06T05:24:06.000Z", "title": "On partial regularity for the steady Hall magnetohydrodynamics system", "authors": [ "Dongho Chae", "Joerg Wolf" ], "comment": "23 pages(to appear in Communications in Mathematical Physics)", "categories": [ "math.AP" ], "abstract": "We study partial regularity of suitable weak solutions of the steady Hall magnetohydrodynamics equations in a domain $\\Omega \\subset \\Bbb R^3$. In particular we prove that the set of possible singularities of the suitable weak solution has Hausdorff dimension at most one. Moreover, in the case $\\Omega=\\Bbb R^3$, we show that the set of possible singularities is compact.", "revisions": [ { "version": "v1", "updated": "2015-05-06T05:24:06.000Z" } ], "analyses": { "subjects": [ "35Q35", "35Q85", "76W05" ], "keywords": [ "steady hall magnetohydrodynamics system", "suitable weak solution", "steady hall magnetohydrodynamics equations", "study partial regularity", "singularities" ], "publication": { "doi": "10.1007/s00220-015-2429-2", "journal": "Communications in Mathematical Physics", "year": 2015, "month": "Nov", "volume": 339, "number": 3, "pages": 1147 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015CMaPh.339.1147C" } } }