{ "id": "1505.01047", "version": "v1", "published": "2015-05-05T15:44:58.000Z", "updated": "2015-05-05T15:44:58.000Z", "title": "Representations of affine superalgebras and mock theta functions III", "authors": [ "Victor G. Kac", "Minoru Wakimoto" ], "categories": [ "math.RT" ], "abstract": "We study modular invariance of normalized supercharacters of tame integrable modules over an affine Lie superalgebra, associated to an arbitrary basic Lie superalgebra $ \\mathfrak{g}. $ For this we develop a several step modification process of multivariable mock theta functions, where at each step a Zwegers' type \"modifier\" is used. We show that the span of the resulting modified normalized supercharacters is $ SL_2(\\mathbb{Z}) $-invariant, with the transformation matrix equal, in the case the Killing form on $\\mathfrak{g}$ is non-degenerate, to that for the subalgebra $ \\mathfrak{g}^! $ of $ \\mathfrak{g}, $ orthogonal to a maximal isotropic set of roots of $ \\mathfrak{g}. $", "revisions": [ { "version": "v1", "updated": "2015-05-05T15:44:58.000Z" } ], "analyses": { "keywords": [ "affine superalgebras", "arbitrary basic lie superalgebra", "representations", "affine lie superalgebra", "study modular invariance" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150501047K" } } }