{ "id": "1505.00770", "version": "v1", "published": "2015-05-04T19:57:50.000Z", "updated": "2015-05-04T19:57:50.000Z", "title": "Quasi-linear functionals determined by weak-2-local $^*$-derivations on $B(H)$", "authors": [ "Mohsen Niazi", "Antonio M. Peralta" ], "categories": [ "math.FA", "math.OA" ], "abstract": "We prove that, for every separable complex Hilbert space $H$, every weak-2-local $^*$-derivation on $B(H)$ is a linear $^*$-derivation. We also establish that every (non-necessarily linear nor continuous) weak-2-local derivation on a finite dimensional C$^*$-algebra is a linear derivation.", "revisions": [ { "version": "v1", "updated": "2015-05-04T19:57:50.000Z" } ], "analyses": { "keywords": [ "quasi-linear functionals", "separable complex hilbert space", "linear derivation", "finite dimensional", "non-necessarily linear" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }