{ "id": "1505.00686", "version": "v1", "published": "2015-05-04T15:49:10.000Z", "updated": "2015-05-04T15:49:10.000Z", "title": "Hyperbolicity of renormalization for critical circle maps with non-integer exponents", "authors": [ "Igors Gorbovickis", "Michael Yampolsky" ], "categories": [ "math.DS" ], "abstract": "We construct a renormalization operator which acts on analytic circle maps whose critical exponent $\\alpha$ is not necessarily an odd integer $2n+1$, $n\\in\\mathbb N$. When $\\alpha=2n+1$, our definition generalizes cylinder renormalization of analytic critical circle maps. In the case when $\\alpha$ is close to an odd integer, we prove hyperbolicity of renormalization for maps of bounded type.", "revisions": [ { "version": "v1", "updated": "2015-05-04T15:49:10.000Z" } ], "analyses": { "subjects": [ "37E20", "37F25" ], "keywords": [ "non-integer exponents", "hyperbolicity", "odd integer", "definition generalizes cylinder renormalization", "analytic critical circle maps" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }